Supporting Information

Two 2D layered P_4Mo_6 clusters with the potential bifunctional properties: proton conduction and CO_2 photoreduction

Ze-Yu Du,[†] Zhang Chen, [†] Run-Kun Kang,[†] Ye-Min Han,[†] Jie Ding, [‡] Jia-Peng Cao,[†] Wei Jiang, [†] Min Fang,[‡] Hua Mei*, [†] and Yan Xu*,[†]

[†]College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China [‡]Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu College of Chemistry and Materials Science, Key Laboratory of New Power Batteries, Nanjing Normal University, Nanjing 210023, P. R. China. **Impedance analysis.** The samples were put into a homemade mould with a radius of 0.2 cm to get circular pellets. The thickness was measured by a vernier caliper. And then the pellets were smeared by silver colloid on two sides which were fixed on the sample stage with gold wires. The value of proton conduction were measured through an impedance/gain-phase analyzer (Solartron S1 1260) over a frequency range from 1 Hz to 1 MHz with an input voltage range from 100 mV to 3000 mV. The measurements were operated at temperatures (25 to 60 °C), with different relative humidities (40% to 98% RH). The proton conductivity was calculated using the following equation:

$$\sigma = \frac{l}{SR}$$
,

where σ is the conductivity (S cm⁻¹), *l* is the thickness (cm) of the pellet, S is the cross-sectional area (cm²) of the pellet and R is the bulk resistance (Ω). The activation energy (Ea) was calculated from the following equation:

$$\ln \sigma_T = \ln \sigma_0 - \frac{E_a}{KT} \qquad (K = 8.6 \times 10^{-5} \text{ eV/K}),$$

where σ is the conductivity (S cm⁻¹), K is the Boltzmann constant (eV/K) and T is the temperature (K).

Photocatalytic CO₂ reduction experiments. The photocatalytic performance of compound 1 and 2 was evaluated by applying it to the photocatalytic reduction of CO₂ (CEL-SPH2N-S9, AULTT, China). The experiments were carried out in a 100 mL Pyrex flask. A 300 W xenon arc lamp (CEL-PF300-T8, AULTT, China) (photocurrent: 14.5A) was employed as a visible-light source through a UV-cutoff filter with a wavelength greater than 420 nm, which was installed 10 cm away from the reaction solution. In the system of CO₂ photocatalytic reduction, we put photocatalyst (10mg) into a mixed solvent of triethanolamine (TEAOH, as a sacrificial base) and acetonitrile (1:4 v/v, 50 mL), and used [Ru(bpy)₃]Cl₂•6H₂O (11.3mg) as photosensitizer. The products were analyzed by performing gas chromatography (GC7920-TF2Z, AULTT, China).

Electrochemical measurements. The Mott-Schottky spots were carried out at ambient environment via using the electrochemical workstation (CHI 760e) in a

standard three-electrode system: The carbon cloth (CC, 1 cm×1 cm) modified with catalyst samples, carbon rod and Ag/AgCl were used as the working electrode, counter electrode and the reference electrode, respectively. The catalyst of 5 mg were grinded to powder and then dispersed in 1 mL of 0.5% Nafion solvent by ultrasonication to form a homogeneous ink. Subsequently, 200 μ L of the ink were deposited onto the carbon cloth, and dried in room temperature for Mott-Schottky spots measurements. The Mott-Schottky plots were measured over an alternating current (AC) frequency of 1000 Hz, 1500 Hz and 2000 Hz, and three electrodes were immersed in the 0.2 M Na₂SO₄ aqueous solution.

Fig. S1. (a) The image of compound 1 crystal under optical microscope.; (b) The image of compound 2 crystal under optical microscope.

Fig. S2. Ball and stick representation of the basic crystallographic unit in compound **1**. Hydrogen atoms are omitted for clarity.

Fig. S3. Ball and stick representation of the basic crystallographic unit in compound 2. Hydrogen atoms are omitted for clarity.

Fig. S4. (a) The 3D supramolecular structure of compound 1 along the b-axis. (b) Three $\{M[P_4Mo_6]_2\}$ units are connected with each other by hydrogen bonds. Free water molecules are omitted for clarity.

Fig. S5. (a) The 3D supramolecular structure of compound 2. (b) The hydrogen bonding interactions in compound 2 along the b-axis. Free water and ethanol molecules are omitted for clarity.

Fig. S7. The IR spectrum of compound 2.

Powder X-ray Diffraction (PXRD)

Fig. S8. Experimental and simulated PXRD patterns of compound 1.

Fig. S9. Experimental and simulated PXRD patterns of compound 2.

Fig. S10. The powder XRD patterns of compound 1 after impedance measurement.

Fig. S11. The powder XRD patterns of compound 2 after impedance measurement.

Fig. S12. The powder XRD patterns of compound 2 in different solutions compared with simulated curves.

Thermogravimetric Analysis (TGA)

Fig. S13. The TG curve for compound 1.

Fig. S14. The TG curve for compound 2.

CO₂ photocatalytic reduction

Fig. S15. GC profiles of CO_2 reduction to CO without catalyst after reaction 8h.

Fig. S16. GC profiles of CO_2 reduction to CO with compound 1 as catalyst after reaction 8h.

Fig. S17. GC profiles of CO_2 reduction to CO with compound 2 as catalyst after reaction 8h.

Mo(1)-O(33)	1.683(5)	P(1)-O(9)	1.502(5)
Mo(1)-O(6)	1.931(5)	P(1)-O(24)	1.545(5)
Mo(1)-O(3)	1.976(5)	P(1)-O(22)	1.549(5)
Mo(1)-O(21)	2.063(5)	P(1)-O(13)	1.553(5)
Mo(1)-O(7)	2.095(5)	P(2)-O(31)	1.490(6)
Mo(1)-O(22)	2.290(5)	P(2)-O(15)	1.526(5)
Mo(2)-O(19)	1.689(5)	P(2)-O(21)	1.539(6)
Mo(2)-O(11)	1.934(5)	P(2)-O(28)	1.594(6)
Mo(2)-O(2)	1.960(5)	P(3)-O(35)	1.508(6)
Mo(2)-O(16)	2.054(5)	P(3)-O(18)	1.523(6)
Mo(2)-O(4)	2.120(5)	P(3)-O(16)	1.533(6)
Mo(2)-O(24)	2.289(5)	P(3)-O(34)	1.586(6)
Mo(3)-O(8)	1.681(5)	P(4)-O(32)	1.455(7)
Mo(3)-O(11)	1.935(5)	P(4)-O(37)	1.517(7)
Mo(3)-O(2)	1.968(5)	P(4)-O(10)	1.525(7)
Mo(3)-O(37)	2.099(5)	P(4)-O(1A)	1.646(8)
Mo(3)-O(1)	2.110(5)	Cd(1)-O(5)	2.237(5)
Mo(3)-O(13)	2.248(5)	Cd(1)-O(5)#1	2.239(5)
Mo(4)-O(27)	1.697(6)	Cd(1)-O(2)	2.239(5)
Mo(4)-O(14)	1.948(5)	Cd(1)-O(2)#1	2.285(5)
Mo(4)-O(5)	1.959(5)	Cd(1)-O(3)#1	2.285(5)
Mo(4)-O(18)	2.049(5)	Cd(1)-O(3)	2.287(5)
Mo(4)-O(4)	2.127(5)	Cd(2)-O(32)#2	2.237(5)
Mo(4)-O(24)	2.305(5)	Cd(2)-O(31)	2.275(5)
Mo(5)-O(36)	1.683(5)	Cd(2)-N(1)	2.318(6)
Mo(5)-O(14)	1.947(5)	Cd(2)-O(2W)	2.324(7)
Mo(5)-O(5)	1.963(5)	Cd(2)-O(1W)	2.344(7)
Mo(5)-O(15)	2.067(6)	Cd(2)-N(5)	2.374(6)
Mo(5)-O(7)	2.112(5)	Cd(3)-O(35)	2.227(6)
Mo(5)-O(22)	2.274(5)	Cd(3)-O(9)	2.281(5)
Mo(6)-O(30)	1.686(6)	Cd(3)-O(4W)	2.290(6)
Mo(6)-O(6)	1.940(5)	Cd(3)-N(9)	2.305(7)
Mo(6)-O(3)	1.968(5)	Cd(3)-N(13)	2.343(8)
Mo(6)-O(10)	2.078(5)	Cd(3)-O(3W)	2.345(8)
Mo(6)-O(1)	2.117(5)		
Mo(6)-O(13)	2.273(5)		

 Table S1. Bond lengths (Å) of main atoms for compound 1.

_

O(33)-Mo(1)-O(6)	106.8(3)	O(11)-Mo(3)-O(1)	155.7(2)
O(33)-Mo(1)-O(3)	101.1(2)	O(2)-Mo(3)-O(1)	86.6(2)
O(6)-Mo(1)-O(3)	95.2(2)	O(37)-Mo(3)-O(1)	86.6(2)
O(33)-Mo(1)-O(21)	96.5(2)	O(8)-Mo(3)-O(13)	168.2(2)
O(6)-Mo(1)-O(21)	85.3(2)	O(11)-Mo(3)-O(13)	84.8(2)
O(3)-Mo(1)-O(21)	161.4(2)	O(2)-Mo(3)-O(13)	80.8(2)
O(33)-Mo(1)-O(7)	97.7(2)	O(37)-Mo(3)-O(13)	79.3(2)
O(6)-Mo(1)-O(7)	154.6(2)	O(1)-Mo(3)-O(13)	71.44(19)
O(3)-Mo(1)-O(7)	86.6 (2)	O(18)-Mo(4)-O(24)	79.1(2)
O(21)-Mo(1)-O(7)	85.2(2)	O(4)-Mo(4)-O(24)	71.83(18)
O(33)-Mo(1)-O(22)	168.4(2)	O(27)-Mo(4)-O(14)	106(3)
O(6)-Mo(1)-O(22)	83.8(2)	O(27)-Mo(4)-O(5)	102.5(2)
O(3)-Mo(1)-O(22)	82.18(19)	O(14)-Mo(4)-O(5)	95.0(2)
O(21)-Mo(1)-O(22)	79.4(2)	O(27)-Mo(4)-O(18)	96.6(3)
O(7)-Mo(1)-O(22)	71.35(19)	O(14)-Mo(4)-O(18)	86.8(2)
O(19)-Mo(2)-O(11)	107.3(2)	O(5)-Mo(4)-O(18)	159.5(2)
O(19)-Mo(2)-O(2)	101.3(2)	O(27)-Mo(4)-O(4)	97.6(2)
O(11)-Mo(2)-O(2)	94.9(2)	O(14)-Mo(4)-O(4)	155.5(2)
O(19)-Mo(2)-O(16)	94.1(2)	O(5)-Mo(4)-O(4)	86.2(2)
O(11)-Mo(2)-O(16)	87.7(2)	O(18)-Mo(4)-O(4)	83.9(2)
O(2)-Mo(2)-O(16)	162.8(2)	O(27)-Mo(4)-O(24)	169.1(2)
O(19)-Mo(2)-O(4)	96.9(2)	O(14)-Mo(4)-O(24)	84.0(2)
O(11)-Mo(2)-O(4)	154.7(2)	O(5)-Mo(4)-O(24)	80.8(2)
O(2)-Mo(2)-O(4)	87.2(2)	O(36)-Mo(5)-O(14)	106.7(3)
O(16)-Mo(2)-O(4)	83.4(2)	O(36)-Mo(5)-O(5)	102.2(3)
O(19)-Mo(2)-O(24)	168.5(2)	O(14)-Mo(5)-O(5)	94.8(2)
O(11)-Mo(2)-O(24)	82.7(2)	O(36)-Mo(5)-O(15)	96.6(3)
O(2)-Mo(2)-O(24)	83.0(2)	O(14)-Mo(5)-O(15)	86.4(2)
O(16)-Mo(2)-O(24)	80.5 (2)	O(5)-Mo(5)-O(15)	159.8(2)
O(4)-Mo(2)-O(24)	72.49(19)	O(36)-Mo(5)-O(7)	95.9(2)
O(8)-Mo(3)-O(11)	105.6(2)	O(14)-Mo(5)-O(7)	156.5(2)
O(8)-Mo(3)-O(2)	103.4(2)	O(5)-Mo(5)-O(7)	86.0(2)
O(11)-Mo(3)-O(2)	94.6(2)	O(15)-Mo(5)-O(7)	85.1(2)
O(8)-Mo(3)-O(37)	96.0(2)	O(36)-Mo(5)-O(22)	166.9(2)
O(11)-Mo(3)-O(37)	84.1(2)	O(14)-Mo(5)-O(22)	85.5(2)
O(2)-Mo(3)-O(37)	160.1(2)	O(5)-Mo(5)-O(22)	80.8(2)
O(8)-Mo(3)-O(1)	97.6(2)	O(15)-Mo(5)-O(22)	79.2(2)

 Table S2. Bond angles (°) of main atoms for compound 1.

O(7)-Mo(5)-O(22)	71.39(2)	O(37)-P(4)-O(1A)	107.4(4)
O(30)-Mo(6)-O(6)	105.6(2)	O(10)-P(4)-O(1A)	107.1(4)
O(30)-Mo(6)-O(3)	102.7(2)	O(5)-Cd(1)-O(5)#1	180.0
O(6)-Mo(6)-O(3)	95.2(2)	O(5)-Cd(1)-O(2)	96.96(18)
O(30)-Mo(6)-O(10)	96.5(2)	O(5)#1-Cd(1)-O(2)	83.04(18)
O(6)-Mo(6)-O(10)	85.7(2)	O(5)-Cd(1)-O(2)#1	83.04(18)
O(3)-Mo(6)-O(10)	159.8(2)	O(5)#1-Cd(1)-O(2)#1	96.96(18)
O(30)-Mo(6)-O(1)	98.8(2)	O(2)-Cd(1)-O(2)#1	180.0
O(6)-Mo(6)-O(1)	154.3(2)	O(5)-Cd(1)-O(3)#1	83.83(18)
O(3)-Mo(6)-O(1)	87.3(2)	O(5)#1-Cd(1)-O(3)#1	96.17(18)
O(10)-Mo(6)-O(1)	83.5(2)	O(2)-Cd(1)-O(3)#1	84.82(18)
O(30)-Mo(6)-O(13)	169.1(2)	O(2)#1-Cd(1)-O(3)#1	95.18(18)
O(6)-Mo(6)-O(13)	84.3(2)	O(5)-Cd(1)-O(3)	96.17(18)
O(3)-Mo(6)-O(13)	80.66(19)	O(5)#1-Cd(1)-O(3)	83.83(18)
O(10)-Mo(6)-O(13)	79.4(2)	O(2)-Cd(1)-O(3)	95.18(18)
O(1)-Mo(6)-O(13)	70.82(19)	O(2)#1-Cd(1)-O(3)	84.82(18)
O(9)-P(1)-O(24)	111.3(3)	O(3)#1-Cd(1)-O(3)	180.0
O(9)-P(1)-O(22)	112.5(3)	O(32)#2-Cd(2)-O(31)	96.5(2)
O(24)-P(1)-O(22)	108.4(3)	O(32)#2-Cd(2)-N(1)	174.0(2)
O(9)-P(1)-O(13)	108.8(3)	O(31)-Cd(2)-N(1)	89.6(2)
O(24)-P(1)-O(13)	108.4(3)	O(32)#2-Cd(2)-O(2W)	91.2(2)
O(22)-P(1)-O(13)	107.2(3)	O(31)-Cd(2)-O(2W)	87.8(3)
O(31)-P(2)-O(15)	112.6(3)	N(1)-Cd(2)-O(2W)	89.1(2)
O(31)-P(2)-O(21)	111.8(3)	O(32)#2-Cd(2)-O(1W)	87.3(2)
O(15)-P(2)-O(21)	111.5(3)	O(31)-Cd(2)-O(1W)	92.2(2)
O(31)-P(2)-O(28)	109.2(3)	N(1)-Cd(2)-O(1W)	92.3(2)
O(15)-P(2)-O(28)	104.7(3)	O(2W)-Cd(2)-O(1W)	178.5(2)
O(21)-P(2)-O(28)	106.5(3)	O(32)#2-Cd(2)-N(5)	101.6(2)
O(35)-P(3)-O(18)	112.3(4)	O(31)-Cd(2)-N(5)	161.9(2)
O(35)-P(3)-O(16)	112.5(4)	N(1)-Cd(2)-N(5)	72.4(2)
O(18)-P(3)-O(16)	111.1(3)	O(2W)-Cd(2)-N(5)	91.8(3)
O(35)-P(3)-O(34)	109.9(3)	O(1W)-Cd(2)-N(5)	88.6(2)
O(18)-P(3)-O(34)	106.2(4)	O(35)-Cd(3)-O(9)	121.5(2)
O(16)-P(3)-O(34)	104.2(3)	O(35)-Cd(3)-O(4W)	85.2(2)
O(32)-P(4)-O(37)	114.2(4)	O(9)-Cd(3)-O(4W)	86.1(2)
O(32)-P(4)-O(10)	112.5(4)	O(35)-Cd(3)-N(9)	87.3(2)
O(37)-P(4)-O(10)	110.9(4)	O(9)-Cd(3)-N(9)	147.3(2)
O(32)-P(4)-O(1A)	104.2(4)	O(4W)-Cd(3)-N(9)	113.5(2)

O(35)-Cd(3)-N(13)	156.6(2)	O(9)-Cd(3)-O(3W)	83.1(3)
O(9)-Cd(3)-N(13)	81.6(2)	O(4W)-Cd(3)-O(3W)	162.7(2)
O(4W)-Cd(3)-N(13)	94.2(3)	N(9)-Cd(3)-O(3W)	82.4(3)
N(9)-Cd(3)-N(13)	71.4(3)	N(13)-Cd(3)-O(3W)	97.5(3)
O(35)-Cd(3)-O(3W)	89.0(3)		

Mo(1)-O(28)	1.676(6)	Mo(6)-O(1)	1.983(5)
Mo(1)-O(8)	1.923(5)	Mo(6)-O(14)	2.033(5)
Mo(1)-O(1)	1.968(5)	Mo(6)-O(7)	2.113(5)
Mo(1)-O(27)	2.062(5)	Mo(6)-O(25)	2.291(5)
Mo(1)-O(5)	2.111(5)	Co(1)-O(4)#1	2.120(5)
Mo(1)-O(6)	2.256(5)	Co(1)-O(4)	2.120(5)
Mo(2)-O(19)	1.680(6)	Co(1)-O(1)	2.146(5)
Mo(2)-O(10)	1.928(5)	Co(1)-O(1)#1	2.146(5)
Mo(2)-O(2)	1.973(5)	Co(1)-O(2)#1	2.167(5)
Mo(2)-O(17)	2.043(5)	Co(1)-O(2)	2.167(5)
Mo(2)-O(3)	2.120(5)	Co(2)-O(29)	1.937(6)
Mo(2)-O(13)	2.287(5)	Co(2)-O(31)	1.944(6)
Mo(3)-O(21)	1.684(6)	Co(2)-O(20)	1.950(6)
Mo(3)-O(12)	1.936(6)	Co(2)-O(9)	1.951(5)
Mo(3)-O(4)	1.989(5)	P(1)-O(9)	1.500(6)
Mo(3)-O(11)	2.042(6)	P(1)-O(13)	1.542(5)
Mo(3)-O(3)	2.115(5)	P(1)-O(25)	1.544(5)
Mo(3)-O(13)	2.287(5)	P(1)-O(6)	1.550(5)
Mo(4)-O(24)	1.671(5)	P(2)-O(29)	1.502(6)
Mo(4)-O(12)	1.930(6)	P(2)-O(16)	1.527(6)
Mo(4)-O(4)	1.983(5)	P(2)-O(30)	1.537(6)
Mo(4)-O(15)	2.046(6)	P(2)-O(14)	1.542(6)
Mo(4)-O(5)	2.113(5)	P(3)-O(20)#2	1.516(6)
Mo(4)-O(6)	2.292(5)	P(3)-O(27)	1.520(6)
Mo(5)-O(26)	1.676(6)	P(3)-O(15)	1.523(6)
Mo(5)-O(10)	1.944(5)	P(3)-O(18)	1.560(7)
Mo(5)-O(2)	1.989(5)	P(4)-O(31)#3	1.475(7)
Mo(5)-O(16)	2.046(5)	P(4)-O(11)	1.517(6)
Mo(5)-O(7)	2.115(5)	P(4)-O(17)	1.525(6)
Mo(5)-O(25)	2.265(5)	P(4)-O(22)	1.570(7)
Mo(6)-O(23)	1.662(6)		
Mo(6)-O(8)	1.922(5)		

 Table S3. Bond lengths (Å) of main atoms for compound 2.

O(28)-Mo(1)-O(8)	106.0(3)	O(21)-Mo(3)-O(4)	101.3(3)
O(28)-Mo(1)-O(1)	102.4(3)	O(12)-Mo(3)-O(4)	95.8(2)
O(8)-Mo(1)-O(1)	95.7(2)	O(21)-Mo(3)-O(11)	96.6(3)
O(28)-Mo(1)-O(27)	95.4(3)	O(12)-Mo(3)-O(11)	87.5(2)
O(8)-Mo(1)-O(27)	87.4(2)	O(4)-Mo(3)-O(11)	160.2(2)
O(1)-Mo(1)-O(27)	160.3(2)	O(21)-Mo(3)-O(3)	96.5(3)
O(28)-Mo(1)-O(5)	94.4(3)	O(12)-Mo(3)-O(3)	157.0(2)
O(8)-Mo(1)-O(5)	158.8(2)	O(4)-Mo(3)-O(3)	85.8(2)
O(1)-Mo(1)-O(5)	85.4(2)	O(11)-Mo(3)-O(3)	83.7(2)
O(27)-Mo(1)-O(5)	84.9(2)	O(21)-Mo(3)-O(13)	170.3(2)
O(28)-Mo(1)-O(6)	167.8(2)	O(12)-Mo(3)-O(13)	83.6(2)
O(8)-Mo(1)-O(6)	84.9(2)	O(4)-Mo(3)-O(13)	80.40(19)
O(1)-Mo(1)-O(6)	81.6(2)	O(11)-Mo(3)-O(13)	80.6(2)
O(27)-Mo(1)-O(6)	79.2(2)	O(3)-Mo(3)-O(13)	74.04(19)
O(5)-Mo(1)-O(6)	74.3(2)	O(24)-Mo(4)-O(12)	105.3(3)
O(19)-Mo(2)-O(10)	105.8(3)	O(24)-Mo(4)-O(4)	102.1(3)
O(19)-Mo(2)-O(2)	102.6(3)	O(12)-Mo(4)-O(4)	96.2(2)
O(10)-Mo(2)-O(2)	96.1(2)	O(24)-Mo(4)-O(15)	96.2(3)
O(19)-Mo(2)-O(17)	95.4(3)	O(12)-Mo(4)-O(15)	87.0(2)
O(10)-Mo(2)-O(17)	87.2(2)	O(4)-Mo(4)-O(15)	159.9(2)
O(2)-Mo(2)-O(17)	159.9(2)	O(24)-Mo(4)-O(5)	96.7(3)
O(19)-Mo(2)-O(3)	96.2(2)	O(12)-Mo(4)-O(5)	156.9(2)
O(10)-Mo(2)-O(3)	156.7(2)	O(4)-Mo(4)-O(5)	85.8(2)
O(2)-Mo(2)-O(3)	86.0(2)	O(15)-Mo(4)-O(5)	83.7(2)
O(17)-Mo(2)-O(3)	83.3(2)	O(24)-Mo(4)-O(6)	169.8(2)
O(19)-Mo(2)-O(13)	169.3(2)	O(12)-Mo(4)-O(6)	84.0(2)
O(10)-Mo(2)-O(13)	83.4(2)	O(4)-Mo(4)-O(6)	80.7(2)
O(2)-Mo(2)-O(13)	81.1(2)	O(15)-Mo(4)-O(6)	79.9(2)
O(17)-Mo(2)-O(13)	79.5(2)	O(5)-Mo(4)-O(6)	73.55(19)
O(3)-Mo(2)-O(13)	73.95(19)	O(26)-Mo(5)-O(10)	105.4(3)
O(21)-Mo(3)-O(12)	105.6(3)	O(26)-Mo(5)-O(2)	102.1(3)
O(10)-Mo(5)-O(2)	95.1(2)	O(4)-Co(1)-O(1)#1	83.7(2)
O(26)-Mo(5)-O(16)	97.3(3)	O(1)-Co(1)-O(1)#1	180.0
O(10)-Mo(5)-O(16)	87.0(2)	O(4)#1-Co(1)-O(2)#1	96.42(19)
O(2)-Mo(5)-O(16)	159.1(2)	O(4)-Co(1)-O(2)#1	83.58(19)
O(26)-Mo(5)-O(7)	97.2(2)	O(1)-Co(1)-O(2)#1	83.4(2)
O(10)-Mo(5)-O(7)	156.8(2)	O(1)#1-Co(1)-O(2)#1	96.6(2)

 Table S4. Bond angles (°) of main atoms for compound 2.

O(2)-Mo(5)-O(7)	85.2(2)	O(4)#1-Co(1)-O(2)	83.58(19)
O(16)-Mo(5)-O(7)	84.9(2)	O(4)-Co(1)-O(2)	96.42(19)
O(26)-Mo(5)-O(25)	170.0(2)	O(1)-Co(1)-O(2)	96.6(2)
O(10)-Mo(5)-O(25)	83.9(2)	O(1)#1-Co(1)-O(2)	83.4(2)
O(2)-Mo(5)-O(25)	80.2(2)	O(2)#1-Co(1)-O(2)	180.0(2)
O(16)-Mo(5)-O(25)	79.4(2)	O(29)-Co(2)-O(31)	101.4(3)
O(7)-Mo(5)-O(25)	73.23(19)	O(29)-Co(2)-O(20)	98.7(3)
O(23)-Mo(6)-O(8)	105.4(3)	O(31)-Co(2)-O(20)	103.7(3)
O(23)-Mo(6)-O(1)	101.7(3)	O(29)-Co(2)-O(9)	123.0(2)
O(8)-Mo(6)-O(1)	95.2(2)	O(31)-Co(2)-O(9)	115.8(3)
O(23)-Mo(6)-O(14)	95.2(3)	O(20)-Co(2)-O(9)	111.5(2)
O(8)-Mo(6)-O(14)	89.2(2)	O(9)-P(1)-O(13)	111.6(3)
O(1)-Mo(6)-O(14)	160.6(2)	O(9)-P(1)-O(25)	110.0(3)
O(23)-Mo(6)-O(7)	98.5(2)	O(13)-P(1)-O(25)	108.7(3)
O(8)-Mo(6)-O(7)	155.1(2)	O(9)-P(1)-O(6)	111.4(3)
O(1)-Mo(6)-O(7)	86.5(2)	O(13)-P(1)-O(6)	107.2(3)
O(14)-Mo(6)-O(7)	81.7(2)	O(25)-P(1)-O(6)	107.9(3)
O(23)-Mo(6)-O(25)	171.0(2)	O(29)-P(2)-O(16)	112.9(4)
O(8)-Mo(6)-O(25)	83.1(2)	O(29)-P(2)-O(30)	109.1(3)
O(1)-Mo(6)-O(25)	80.0(2)	O(16)-P(2)-O(30)	106.0(3)
O(14)-Mo(6)-O(25)	81.9(2)	O(29)-P(2)-O(14)	110.6(4)
O(7)-Mo(6)-O(25)	72.73(19)	O(16)-P(2)-O(14)	110.4(3)
O(4)#1-Co(1)-O(4)	180.0	O(30)-P(2)-O(14)	107.6(3)
O(4)#1-Co(1)-O(1)	83.7(2)	O(20)#2-P(3)-O(27)	110.1(4)
O(4)-Co(1)-O(1)	96.3(2)	O(20)#2-P(3)-O(15)	107.3(3)
O(4)#1-Co(1)-O(1)#1	96.3(2)	O(27)-P(3)-O(15)	112.5(3)
O(11)-P(4)-O(17)	112.2(3)	O(17)-P(4)-O(22)	106.6(4)
O(31)#3-P(4)-O(22)	109.1(4)	O(20)#2-P(3)-O(18)	110.1(4)
O(11)-P(4)-O(22)	106.4(4)	O(27)-P(3)-O(18)	109.1(4)
O(31)#3-P(4)-O(11)	109.6(4)	O(15)-P(3)-O(18)	107.7(4)
O(31)#3-P(4)-O(17)	112.7(4)		

D—H…A	D-H	Н…А	D…A	D−H…A
O1W-H1WA…O21	0.87	2.36	3.091(9)	141
O1W-H1WA-O13W	0.87	2.48	3.22(2)	143
O1W-H1WB…O10W	0.87	2.01	2.858(19)	165
N2-H2A-031	0.86	2.46	3.225(8)	147
N2-H2BO8	0.86	2.13	2.981(9)	170
O2W-H2WA…N12	0.87	2.07	2.938(12)	173
N3-H3A···O5W	0.86	1.98	2.842(9)	168
O2W-H2WB…O1A	0.85	2.02	2.689(9)	133
O3W-H3WA…O11	0.91	1.84	2.738(10)	171
O3W-H3WB···O7W	0.90	2.44	3.116(14)	132
O3W-	0.90	2.19	2.99(4)	146
H3WB…O8WA				
O4W-H4WA···O5W	0.90	1.88	2.735(8)	158
N7-H7A…O19	0.86	2.29	2.976(9)	136
N7-H7A-033	0.86	2.38	3.004(9)	129
O4W-H4WB···O5W	0.92	2.12	2.761(8)	126
N8-H8A…O9W	0.86	2.37	2.976(18)	128
N8-H8B…O16	0.86	2.38	3.160(9)	151
N8-H8B…O19	0.86	2.43	3.108(10)	137
O5W-H5WBO28	0.83	2.30	2.887(9)	129
N10-H10A-035	0.86	2.30	3.059(11)	148
N10-H10BO30	0.86	2.36	3.155(11)	154
N11-H11A…O6W	0.86	1.92	2.782(13)	176
O11W-H11BO27	0.85	2.56	3.31(2)	147
O12W-H12B···O6W	0.86	2.57	3.35(2)	150
O7W-	0.83	1.92	2.67(3)	148
H7WA…O9WA				
O7W-	0.83	1.99	2.78(4)	158
H7WA…O8WA				
N15-H15A…O14W	0.86	1.91	2.75(3)	168
O8W-H8WB-031	0.83	1.92	2.727(14)	163
N16-H16BO9	0.86	2.32	3.003(16)	137
O9W-H9WA···O7W	0.83	2.06	2.63(2)	125
O34-H34-O13W	0.85	1.91	2.57(2)	134

 Table S5.
 Hydrogen bonds for compound 1 [Å and °].

D—H…A	D-H	Н…А	D…A	D−H…A
N1-H1···O5	0.86	2.00	2.860(16)	175
N2-H2-O3	0.86	2.02	2.850(11)	163
N3—H3A…O7	0.86	2.11	2.932(8)	159
N4-H4-O20	0.86	2.02	2.854(5)	163
N6-H6A-09	0.86	2.32	3.126(10)	156
C1A-H1AA ···O12	0.96	2.13	2.858(15)	132
C1A-H1AA…O15	0.96	2.48	3.087(15)	121
C4—H4A…O24	0.93	2.60	3.40(2)	144
С5—Н5…О24	0.93	2.38	3.205(10)	147
C2A-H2AB… N5	0.97	2.50	3.347(15)	146
С6-Н6-О30	0.93	2.48	3.349(12)	155
С8—Н8…О18	0.93	2.32	3.028(11)	133
С8—Н8…О8	0.93	2.19	2.830(10)	125
С8—Н8…О27	0.93	2.31	2.916(9)	122
С9—Н9…О22	0.93	2.21	2.881(3)	128

Table S6. Hydrogen bonds for compound 2 [Å and °].

Compound	Condition (Temp., RH)	Conductivity [S cm ⁻¹]	Ref
$(Na_{8}K_{4}(H_{2}pip)_{8}H_{21}[\{Cu(pip)_{2}\}_{52}\{La_{29}Ge_{10}W_{106}O_{406}$ $(OH)_{4}(H_{2}O)_{28}\}]$	85 °C, 98%	5.3 × 10 ⁻³	1
$(C_2H_6O)(C_3H_5N_2)_6[Co_3(H_6P_4Mo_6O_{31})_2]$ •H ₂ O	60 °C, 98%	3.78×10 ⁻³	This work
${[Cu(H_2bpdc)(H_2O)_{2.5}]_2[SiW_{12}O_{40}]} \cdot 10H_2O$	100 °C, 98%	1.77×10 ⁻³	2
$[Co(bpz)(Hbpz)][Co(SO_4)_{0.5}(H_2O)_2(bpz)]_4$ $[PMo^{VI}_8Mo^V_4V^{IV}_4O_{42}] \cdot 13H_2O$	75 °C,98%	1.5 × 10 ⁻³	3
${H[Ni(Hbpdc)(H_2O)_2]_2[PW_{12}O_{40}] \cdot 8H_2O}_n$	100 °C,98%	1.35 × 10 ⁻³	4
[M(H ₂ O) ₈][H(H ₂ O) ₂₋₃](HINO) ₄ [PXO ₄₀] M=Zn, Mn, Cu; X=W, Mo	100 °C,98%	1.3 × 10 ⁻³	5
$Na_{5}[H_{7}{N(CH_{2}PO_{3})_{3}}Mo_{6}O_{16}(OH)(H_{2}O)_{4}]_{4}$	60 °C, 98%	7.6 × 10 ⁻⁴	6
${[Cu_3(L)_2(H_2O)_4][Cu(DMF)_4(SiW_{12}O_{40})] \cdot 9H_2O}_n$	100 °C, 98%	5.97 × 10 ⁻⁴	7
[Zn ₁₂ (trz) ₂₀][SiW ₁₂ O ₄₀]·11H ₂ O	95 °C, 95%	1.2×10^{-4}	8
$[Cu_{12}(BTC)_8(H_2O)_{12}][H_3PW_{12}O_{40}] \cdot nH_2O$	90 °C, 70%	4.76 × 10 ⁻⁵	9
$[Cu(phen)(H_2O)]_3[P_2Mo_5O_{23}] \cdot 5H_2O$	28 °C, 98%	2.2 × 10 ⁻⁵	10
$[H_2en]_4[Ni_5(OH)_3(trzS)_3(en)(H_2O)(PW_9O_{34})] \cdot 6H_2O$	85 °C, 98%	1.3 × 10-5	11
$Cu_6(Trz)_{10}(H_2O)_4[H_2SiW_{12}O_{40}]\cdot 8H_2O$	95 °C, 95%	1.84×10^{-6}	12

 Table S7. Proton conductivities of the reported POM-based materials.

Catalyst	Main product	Side product	Efficiency of main product (μmol g ⁻¹)	Ref
[Co _{2.67} (SiW ₁₂ O ₄₀)(H ₂ O) ₄ (Htrz) ₄]·Cl _{1.33}	СО	H ₂	15705	13
$(C_2H_6O)(C_3H_5N_2)_6[Co_3(H_6P_4Mo_6O_{31})_2]\bullet H_2O$	СО	None	5789	This work
Na ₁₀ Co ₄ (H ₂ O) ₂ (PW ₉ O ₃₄) ₂ @g-C ₃ N ₄	СО	H ₂	896	14
K ₄ Na ₂₈ [{Co ₄ (O-H) ₃ (VO ₄)} ₄ (SiW ₉ O ₃₄) ₄]·66H ₂ O	СО	H ₂	839.2	15
Au@ $[Cu_2(BTC)_{4/3}(H_2O)_2]_6[H_5PTi_2W_{10}O_{40}] \cdot (C_4H_{12}N)_2 \cdot 24H_2O$	СО	CH ₄	64	16
(H ₂ bib) _{2.5} {HCo[Mo ₆ O ₁₄ (OH)(HPO ₄) ₄] ₂ }·4H ₂ O	СО	CH ₄	10.76	17
$H\{[Na_{6}CoMn_{3} \\ (PO_{4})(H_{2}O)_{4}]_{3}\{[Mo_{6}O_{12}(OH)_{3}(HPO_{4})_{3}(PO_{4})]_{4}[Co_{1.5}Mn_{4.5}]\}\cdot 21H_{2}O(H_{10})^{2}(H$	CH ₄	СО	40.2	18

 Table S8. CO2 photoreduction of the reported POM-based materials.

Notes and references

(1) Li, Z.; Li, X. X.; Yang, T.; Cai, Z. W.; Zheng, S. T. Four-Shell Polyoxometalates Featuring High-Nuclearity Ln₂₆ Clusters: Structural Transformations of Nanoclusters into Frameworks Triggered by Transition-Metal Ions. *Angew. Chem., Int. Ed.* **2017**, *56*, 2664-2669.

(2) Yang, H.; Duan, X. Y.; Lai, J. J.; Wei, M. L. Proton-Conductive Keggin-Type Clusters Decorated by the Complex Moieties of Cu(II) 2,2'-Bipyridine-4,4'-dicarboxylate/Diethyl Analogues. *Inorg. Chem.* **2019**, *58*, 1020-1029.

(3) Li, J.; Cao, X. L.; Wang, Y. Y.; Zhang, S. R.; Du, D. Y.; Qin, J. S.; Li, S. L.; Su, Z. M.; Lan, Y. Q. The Enhancement on Proton Conductivity of Stable Polyoxometalate-Based Coordination Polymers by the Synergistic Effect of MultiProton Units. *Chem. Eur. J.* **2016**, *22*, 9299-9304.

(4) Wei, M.; Wang, X.; Sun, J.; Duan, X. A 3D POM-MOF Composite Based on Ni(II) ion and 2,2'-Bipyridyl-3,3'-dicarboxylic Acid: Crystal Structure and Proton Conductivity. *J. Solid State Chem.* **2013**, *202*, 200-206.

(5) Wei, M. L.; Zhuang, P. F.; Li, H. H.; Yang, Y. H. Crystal Structures and Conductivities of Two Organic-Inorganic Hybrid Complexes Based on Poly-Keggin-Anion Chains. *Eur. J. Inorg. Chem.* **2011**, *2011*, 1473-1478.

(6) Yang, L.; Ma, P.; Zhou, Z.; Wang, J.; Niu, J. A Crown-Shaped 24-Molybdate Cluster Constructed by Organotriphosphonate Ligand. *Inorg. Chem.* **2013**, *52*, 8285-8287.

(7) Wei, M. L.; Sun, J. J.; Duan, X. Y. A Complex Based on a CuII-Schiff-Base Complex and POM-MOF Chain: Synthesis, Structure and Proton Conductivity. *Eur. J. Inorg. Chem.* **2014**, *2014*, 345-351.

(8) Zhou, E. L.; Qin, C.; Wang, X. L.; Shao, K. Z.; Su, Z. M. Steam-Assisted Synthesis of an Extra-Stable Polyoxometalate-Encapsulating Metal Azolate Framework: Applications in Reagent Purification and Proton Conduction. *Chem. Eur. J.* **2015**, *21*, 13058-13064.

(9) Liu, Y.; Yang, X.; Miao, J.; Tang, Q.; Liu, S.; Shi, Z.; Liu, S. Polyoxometalate Functionalized Metal-Organic Frameworks with Improved Water Retention and Uniform Proton-Conducting Pathways in Three Orthogonal Directions. *Chem. Commun.* **2014**, *50*, 10023-10026.

(10)Dey, C.; Kundu, T.; Banerjee, R. Reversible Phase Transformation in Proton Conducting Strandberg-Type POM Based Metal Organic Material. *Chem. Commun*. **2012**, *48*, 266-268.

(11)Cao, G. J.; Liu, J.-D.; Zhuang, T. T.; Cai, X. H.; Zheng, S. T. A Polyoxometalate Organic Supramolecular Nanotube with High Chemical Stability and Proton-Conducting Properties. *Chem. Commun.* **2015**, *51*, 2048-2051.

(12)Zhou, E. L.; Qin, C.; Huang, P.; Wang, X. L.; Chen, W. C.; Shao, K. Z.; Su, Z. M. A Stable Polyoxometalate-Pillared Metal-Organic Framework for Proton-Conducting and Colorimetric Biosensing. *Chem. Eur. J.* **2015**, *21*, 11894-11898.

(13) Yao, W.; Qin, C.; Xu, N.; Zhou, J.; Sun, C. Y.; Liu, L.; Su, Z. M. Visible-light CO₂ photoreduction of polyoxometalate-based hybrids with different cobalt clusters. *CrystEngComm.* **2019**, *21*, 6423–6431.

(14)Zhou, J.; Chen, W. C.; Sun, C. Y.; Han, L.; Qin, C.; Chen, M. M.; Wang, X. L.; Wang, E. B.; Su, Z. M. Oxidative Polyoxometalates Modified Graphitic Carbon Nitride for Visible-Light CO₂ Reduction. *ACS Appl. Mater. Interfaces.* **2017**, *9*, 11689–11695.

(15)Qiao, L. Z.; Song, M.; Geng, A. F.; Yao, S. Polyoxometalate-Based High-Nuclear Cobalt–Vanadium–Oxo Cluster as Efficient Catalyst for Visible Light-Driven CO₂ Reduction. *Chin. Chem. Lett.* **2019**, *30*, 1273-1276.

(16)Liu, S. M.; Zhang, Z.; Li, X. H.; Jia, H. J.; Ren, M. W.; Liu, S. X. Ti-substituted Keggin-type Polyoxotungstate as Proton and Electron Reservoir Encaged into Metal-Organic Framework for Carbon Dioxide Photoreduction. *Adv. Mater. Interfaces.* **2018**, *5*, 1801062.

(17) Du, J.; Ma, Y. Y.; Xin, X.; Na, H.; Zhao, Y. N.; Tan, H. Q.; Han, Z. G.; Li, Y. G.; Kang, Z. H. Reduced Polyoxometalates and Bipyridine Ruthenium Complex Forming a Tunable Photocatalytic System for High Efficient CO₂ Reduction. *Chem. Eng. J.* **2020**, *398*, 125518.

(18)Xie, S. L.; Liu, J.; Dong, L. Z.; Li, S. L.; Lan, Y. Q.; Su, S. M. Hetero-Metallic Active Sites Coupled with Strongly Reductive Polyoxometalate for Selective Photocatalytic CO₂-to-CH₄ Conversion in Water. *Chem. Sci.* **2019**, *10*, 185-190.